INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 19–0339/2019/22–3–561–568 DOI: 10.17957/IJAB/15.1100 http://www.fspublishers.org



# Full Length Article

# Comprehensive Evaluation on the Tolerance of Eight Crop Species to CO<sub>2</sub> Leakage from Geological Storage

Lu Xue<sup>1,2</sup>, Junjie Ma<sup>1,3\*</sup>, Jiangli Wu<sup>1</sup>, Chenyang Zhao<sup>1</sup>, Haodong Liu<sup>1</sup>, Dan Liu<sup>1</sup> and Jinfeng Ma<sup>3</sup>

<sup>1</sup>College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China <sup>2</sup>College of Life Science, Yulin University, Yulin 719000, China <sup>3</sup>National & Local Joint Engineering Research Center of Carbon Capture and Storage Technology, Northwest University,

Xi'an 710127, China

\*For correspondence: xdhgvip@163.com

# Abstract

Carbon dioxide capture and storage (CCS) is considered as the most promising and potential technology of reduction in CO<sub>2</sub> emission. However, the risk of CO<sub>2</sub> leakage resulting from geological storage projects has a significant impact on the surroundings, especially on the associated farmland ecosystem. As the basis for agricultural production decision-making in the CCS project area, it is very important to carry out in-depth research on the response of crops to high CO<sub>2</sub> concentration and quantitative evaluation of crop tolerance to CO<sub>2</sub>. In this paper, the impacts of ultra-high CO<sub>2</sub> on the plant height, maximum root length, leaf number, net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO<sub>2</sub> concentration, fresh and dry biomass of eight typical crops were simulated using CO<sub>2</sub> artificial climate chamber. A comprehensive evaluation method on the crop tolerance to CO<sub>2</sub> was established based on principal component analysis (PCA) and fuzzy comprehensive evaluation method (FCE) and the tolerance of eight typical crops to CO<sub>2</sub> in the Loess Plateau of China was evaluated. The results indicated that the growth of eight crops was promoted in a certain range of CO<sub>2</sub> concentration and the maximum growth indicators of C<sub>3</sub> crops was at 10 mmol·mol<sup>-1</sup> and that of C<sub>4</sub> crops was at 20 mmol·mol<sup>-1</sup>. When the CO<sub>2</sub> concentration continued to increase, the growth of C<sub>3</sub> and C<sub>4</sub> crops were inhibited in varying degrees, in which the inhibition for C<sub>3</sub> crops was higher. The relative tolerance of crops to CO<sub>2</sub> was as follows: sorghum > broomcorn millet > foxtail millet > maize > mung bean > soybean > potatoes > buckwheat and C<sub>4</sub> crops were more tolerant to CO<sub>2</sub> than C<sub>3</sub> crops. The priority crops for CO<sub>2</sub> leakage of the CCS project area was recommended in Loess Plateau of China. © 2019 Friends Science Publishers

Keywords: CCS; CO<sub>2</sub> leakage; Crop tolerance; Photosynthetic pathways; Farmland

## Introduction

As a key part of clean energy technology, carbon dioxide capture and storage (CCS) provides a sustainable path to reduce greenhouse-gas emissions and ensures energy security (GCCSI, 2018). It injects CO<sub>2</sub> captured from the emission sources of industry or related energy industries into stable geological structures such as oil and gas reservoirs, deep saltwater layers and unexploited coal seams to reduce CO<sub>2</sub> emissions and its sequestration from the atmosphere permanently (IPCC, 2005; Christensen, 2007; Leung et al., 2014). However, in terms of the current CCS development, there are still risks of CO<sub>2</sub> leakage through injection wells, abandoned wells or ineffective confining layers (Metz and Davidson, 2008). Once CO<sub>2</sub> leakage occurs, it will have a significant impact on water and soil environment, growth and development of plants and animals, as well as on human security (Zwaan and Gerlagh, 2009; Blackford et al., 2013).

Previous studies about climate change impact mostly

focused on the effects of doubling CO<sub>2</sub> concentration on typical plants (Cure and Acock, 1986; Kimball et al., 1993; Wang et al., 1995; Yang et al., 1997; Rogers et al., 1999). With the development of CCS technology, the studies of impact on typical plants or crops in ultra-high CO2 concentration which is much higher than doubling CO<sub>2</sub> concentration have become an important field of CCS environmental risk research (Stenhouse et al., 2009a, b). Due to the short construction time, small quantity and small storage scale of the actual CCS project, there is no obvious CO<sub>2</sub> leakage phenomenon in the project area. Current researches on the impact of CO<sub>2</sub> leakage on plants or crops are mostly focused on the field or indoor simulation of CO<sub>2</sub> leakage and on-site investigation or research of other CO<sub>2</sub> leakage points. Beaubien et al. (2008) and Krüger et al. (2009) found that the vegetation coverage was significantly affected within 6 meters around the natural CO<sub>2</sub> leakage point, and gradually recovered from 6 meters away. Pfanz et al. (2007) found that the increase of  $CO_2$  concentration at volcanic eruption led to a decrease in photosynthesis of timothy grass. Amonette et al. (2010), Lakkaraju et al. (2010) and Zhou et al. (2013) observed that plant growth withered or even plant died in the central area of CO<sub>2</sub> leakage source using artificial simulation platform. Pierce and Sjögersten (2009) and Patil et al. (2010) found that the growth of winter bean was significantly inhibited and its biomass reduced remarkably compared to pasture grass through artificial simulation platform experiments. In addition, Tian (2013), Wu et al. (2014) and Deng et al. (2017) showed that the root length and biomass of wheat, alfalfa and pea decreased more severely than that of maize by simulating CO<sub>2</sub> leakage in different laboratory scenarios. Many studies pointed out that the difference in response of various plants to CO<sub>2</sub> maybe due to different photosynthesis pathways (Beaubien et al., 2008; Krüger et al., 2009; West et al., 2009; Xue et al., 2014).

It is well known that the photosynthesis of  $C_3$  plants is the conversion of carbon dioxide into organic matter by the Calvin cycle under the action of Rubisco enzyme in mesophyll cells. However, the photosynthesis of C<sub>4</sub> plants is a process that CO<sub>2</sub> is converted to C<sub>4</sub> acid under the action of PEPC carboxylase firstly and the C<sub>4</sub> acid is converted to CO<sub>2</sub> again by decarboxylation reaction in mesophyll cells through Hatch-Slack pathway, and the converted CO<sub>2</sub> is entered to the vascular bundle sheath cells and synthesized to organic matter through the Calvin cycle (Hatch and Slack, 1966; Rosie, 1973, Sayre et al., 1979; Hatch, 1987; Weiner et al., 1988). Under normal CO<sub>2</sub> concentration, photosynthesis of C<sub>3</sub> and C<sub>4</sub> plants is significantly different due to their photosynthesis sites and participating enzymes, and C<sub>4</sub> plants are considered to be superior to C<sub>3</sub> crops in assimilation efficiency of CO2 and more tolerant for the stress of low CO<sub>2</sub> concentration, drought and other factors (Cerling et al., 1993, 1998; Koch et al., 2004). Whether there is a difference in the tolerance of C<sub>3</sub> and C<sub>4</sub> plants to ultra-high concentrations of CO<sub>2</sub> is still a problem worth studying.

In this paper, the simulation experiment of eight typical  $C_3$  and  $C_4$  crops in Loess Plateau of China was carried out to understand the impact of ultra-high  $CO_2$  concentration on the crops. Meanwhile, the evaluation method of crop tolerance to  $CO_2$  was established on the basis of principal component analysis (PCA) and fuzzy comprehensive evaluation method (FCE) to assess the eight typical crops for tolerance to  $CO_2$ . The main purpose of this paper is to systematically understand the response and quantitative evaluate the tolerance of crops to  $CO_2$ , so as to provide a reference for the agricultural production of CCS project area in the Loess Plateau of China.

#### **Materials and Methods**

#### **Plants and Soil Characteristics**

The seeds of eight typical crops (includes four  $C_3$  crops and four  $C_4$  crops) were provided by the Agricultural

Technology Extension Station of Jingbian County, Shaanxi Province of China. Species of tested crops are shown in Table 1. The experimental soil was sampled from the surface soil of 0–20 cm on farmland in the CO<sub>2</sub> injection test area of the CCS testing project (E108°17'–109°27', N36°58'–38°03') in Jingbian County. The type of experimental soil is sandy loam comprising sand (79.3%), silt (12.95%) and clay (7.75%). The pH is 7.8, the organic matter is 0.31%, and the available N, P, K of experimental soil is 30.02, 1.19 and 46.40 mg·kg<sup>-1</sup>, respectively.

#### **Experimental Methods**

**Experimental design and procedures:** In this experiment, a  $CO_2$  artificial climate chamber (RXZ-500C- $CO_2$ , Ningbo, China) was used to simulate the ultra-high  $CO_2$  environment of  $CO_2$  leakage from CCS (Fig. 1).

The PID control system (Proportion, Integral and Derivative Control System, PIDCS) was used to collect and control CO<sub>2</sub> in the artificial climate chamber, and ensure the CO<sub>2</sub> concentration to meet and maintain the experimental requirements. The temperature, relative humidity, illumination and CO<sub>2</sub> concentration of the CO<sub>2</sub> artificial climate chamber ranged from 0 to 50°C, from 30 to 95%, from 0 to 22 KLux, and from 380 to 100000  $\mu$ mol·mol<sup>-1</sup> respectively. All parameters are multi-stage adjustable according to the experimental needs.

In the experiment, 8–10 pots and 4–5 plants/pots of each crop were cultivated to 2–3 leaves stage in the condition of no entrancing CO<sub>2</sub> gas in the CO<sub>2</sub> artificial climate chamber. 6 pots and 1–3 plants/pots of healthy crops were selected and cultivated with watering and fertilizing regularly for 30 days under the controlled CO<sub>2</sub> concentration. Five CO<sub>2</sub> concentrations of the CO<sub>2</sub> artificial climate chamber were set to 380  $\mu$ mol·mol<sup>-1</sup> (the control group), 10, 20, 40, and 80 mmol·mol<sup>-1</sup>, respectively. The other conditions of the CO<sub>2</sub> artificial climate chamber were set with the temperature of 25°C, RH of 75% and illumination of 22 KLux at daytime of 12 h, and with the temperature of 20°C, RH of 75% and illumination of 4.4 KLux at nighttime of 12 h, respectively.

**Growth measurement indicators:** Nine growth indicators including plant height, leaf number, maximum root length, fresh and dry biomass, net photosynthetic rate (Pn), transpiration rate (E), stomatal conductance (gs) and intercellular CO<sub>2</sub> concentration (Ci) were determined in which Pn, E, gs, Ci were measured by LI-6400X photosynthesis analyzer (Nebraska, USA).

#### Evaluation for Crop Tolerance to CO<sub>2</sub>

According to Shelford's law of tolerance, the adaptation of organisms to their ecological factors have the limit of

Table 1: Species of tested corps

| Photosynthetic pathway | Species                                   | Cultivar       |
|------------------------|-------------------------------------------|----------------|
| C <sub>3</sub>         | Mung bean (Vigna radiata L. Wilczek)      | Local Jingbian |
|                        | Soyabean (Glycine max L.Merrill)          | Qindou No. 8   |
|                        | Buckwheat (Fagopyrum esculentum. Moench)  | Yuqiao No. 4   |
|                        | Potatoes (Solanum tuberosum)              | Favorita       |
| $C_4$                  | Maize (Zea mays L.)                       | Ximeng No. 6   |
|                        | Sorghum (Sorghum bicolor L. Moench)       | Jinza No. 12   |
|                        | Foxtail millet (Setaria italica L. Beauv) | Jingu No. 29   |
|                        | Broomcorn millet (Panicum miliaceum L.)   | Neimi No. 5    |

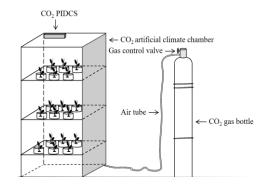



Fig. 1: CO<sub>2</sub> artificial climate chamber

minimum and/or maximum, and the range from the minimum to the maximum is called the biological tolerance range (Shelford, 1911a, 1911b, 1931). Shelford answered the question of biological tolerance range, but there still is difference of the optimal range and the adaptive range within the range and the measurement of ecological factor tolerance within the adaptive range needs to be further refined. On the basis of mechanism that  $CO_2$  have effects of fertilization and inhibition on crops, the concept of crop tolerance coefficient to  $CO_2$  is introduced to express the tolerance of crops to high  $CO_2$  concentration compared to normal atmospheric  $CO_2$  concentration.

The tolerance of crops is referred to the growth and development of crops which can be measured by morphological indicators, physiological indicators, biomass indicators and other indicators. As there is a certain degree of independence or complementarity between single indicators of plant, the tolerance between single indicators and the tolerance between single indicators and comprehensive indicators of crops are different, therefore, based on the tolerance coefficient of single indicator, the PCA and FCE are used to construct a comprehensive evaluation method of crop tolerance to  $CO_2$ , so as to comprehensively calculate the tolerance coefficient of different crops, in which the PCA is used to identify and eliminate the correlation between single indicators, and the FCE is used to comprehensively calculate from single indicators to comprehensive indicators. The details are as follows:

**Tolerance coefficient of single indicator:** The tolerance coefficient of single indicator was calculated

as follows (Luo et al., 2013):

$$x_i = \frac{\overline{V_i}}{V_{CK}}, (i = 1, 2...m)$$
(1)

Where i refers to i-th single indicator, m is the number of

single indicators,  $V_i$  refers to an average value under different treatments of single indicator, and  $V_{CK}$  refers to the measured value under the control treatment.

**Principal component analysis:** According to the calculation method of the correlation coefficient, the correlation coefficients between each single indicator were calculated, and the correlation coefficient matrix of all indicators was obtained. When there were significant or extremely significant correlations between the single indicators in the correlation coefficient matrix, the PCA was used to convert the original correlation indicators into independent indicators. The formula is as follows (Yu, 1993):

$$Z_{j} = \sum_{i=1}^{m} b_{ij} x_{i}, (i = 1, 2...m, j = 1, 2...n, n \leq m)$$
(2)

Where  $Z_j$  is the value of *j*-th principal component indicator;  $b_{ij}$  is the Eigen vector of *i*-th indicator to *j*-th principal component, and *n* is the number of principal component.

The Eigen value  $(\lambda_j)$ , variance contribution  $(P_j)$ , and cumulative variance contribution  $(\sum P_j)$  for each principal component were calculated. Generally, the number of principal components extracted is required to satisfy  $\sum P_j > 0.85$ .

**Comprehensive tolerance coefficient:** According to FCE, the comprehensive tolerance coefficient  $(D_k)$  of each crop to CO<sub>2</sub> was calculated using the following formula (Xie and Liu, 2013):

$$D_{k} = \sum_{j=1}^{n} \mu_{(Z_{jk})} * W_{j}, (j = 1, 2...n)$$
(3)

$$\mu_{(Z_{jk})} = \frac{Z_{jk} - Z_{min}}{Z_{max} - Z_{min}}$$
(4)

$$W_j = \frac{P_j}{\sum_{j=1}^n P_j}$$
(5)

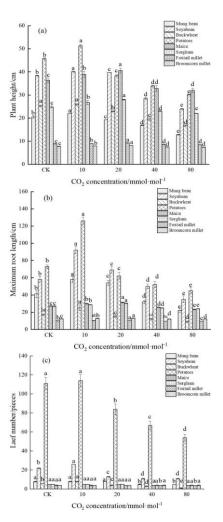
Where  $Z_{jk}$  is  $Z_j$  value of *k*-th crop,  $Z_{max}$  and  $Z_{min}$  represent the maximum and minimum values of *j*-th principal component of all crops respectively,  $W_j$  is the weight value of *j*-th principal component, and  $\mu_{(Z_R)}$  is the membership function value of  $Z_{jk}$  for comprehensive tolerance in formula 3–5.

#### **Statistics Analysis**

Microsoft Office Excel 2010 and origin 8.5 were used for data statistics. SPSS 22.0 was used for significance analysis, correlation analysis and principal component analysis.

#### Result

# Impacts of Ultra-high CO<sub>2</sub> on Growth and Development of Crops


**Morphological indicators:** The impacts of ultra-high CO<sub>2</sub> on plant height, maximum root length and leaf number of eight crops were shown in Fig. 2. Different CO<sub>2</sub> concentration had significant effects on plant height (Fig. 2a) and maximum root length (Fig. 2b) of the eight crops (P < 0.05), but had no significant effect on the number of leaves (Fig. 2c), especially the C<sub>4</sub> crop. Although plant height and maximum root length of C<sub>3</sub> crops were increased at CO<sub>2</sub> concentration of 10 mmol·mol<sup>-1</sup> compared to CK group, significantly inhibited when CO<sub>2</sub> concentration increased to 20, 40, 80 mmol·mol<sup>-1</sup>. The plant height and longest root length of C<sub>4</sub> crops were promoted at CO<sub>2</sub> concentration of 10 and 20 mmol·mol<sup>-1</sup>, while inhibited when CO<sub>2</sub> concentration increased to 40 and 80 mmol·mol<sup>-1</sup>.

Physiological indicators: Gas exchange is often used to reflect the physiological characteristics of plants, which usually involves four indicators; net photosynthetic rate (Pn), transpiration rate (E), stomatal conductance (gs) and intercellular  $CO_2$  concentration (*Ci*). The photosynthesis of C<sub>3</sub> and C<sub>4</sub> crops showed different trends with the increase of  $CO_2$  concentration, which were explained by the examples of mung bean of the C<sub>3</sub> plant and maize of the C<sub>4</sub> plant (Fig. 3). The Pn, E and gs of mung bean and maize had significant differences at CO<sub>2</sub> concentration of 10, 20, 40, 80 mmol·mol<sup>-1</sup> compared to CK group. The Pn, E and gs of mung bean reached the maximum when CO<sub>2</sub> concentration was 10 mmol·mol<sup>-1</sup>, while those of maize reached the maximum when  $CO_2$  concentration was 20 mmol·mol<sup>-1</sup>. As the concentration of  $CO_2$  continues increased, the *Pn*, *E* and gs of mung bean and maize gradually decreased, and the decrease in mung bean was greater than that of maize. In addition, the Ci of mung bean and maize showed an increasing trend with the increase of CO<sub>2</sub> concentration. At different  $CO_2$  concentration, the difference of *Ci* in mung bean was slightly larger than that in maize.

**Biomass indicators:** Biomass indicators are usually measured by fresh and dry biomass. The impacts of ultrahigh CO<sub>2</sub> concentration on fresh and dry biomass of eight crops were shown in Fig. 4. Different CO<sub>2</sub> levels had significant effects on fresh and dry biomass of eight crops (P < 0.05), and there were the same trends with that of plant height and maximum root length. However, the impacts of ultra-high CO<sub>2</sub> on fresh and dry biomass of C<sub>3</sub> and C<sub>4</sub> crops were different. The impact of ultra-high CO<sub>2</sub> concentration on dry biomass of C<sub>3</sub> crops was greater than that of fresh biomass, while it was opposite for C<sub>4</sub> crops (P < 0.05).

### Assessment of Crop Tolerance to CO<sub>2</sub>

**Tolerance coefficient of single indicator:** The tolerance coefficient of single indicator for each crop was calculated



**Fig. 2:** Impacts of different  $CO_2$  concentration on plant height (a), maximum root length (b) and leaf number (c) of eight crops

using formula (1) given in Table 2. It can be seen that the differences of tolerance coefficients in Pn, E, and gs were greater than that in plant height, leaf number, longest root length, fresh biomass, dry biomass and Ci, and the tolerance coefficient in Ci was all greater than 1.

**Principal component analysis:** Through the correlation analysis of the tolerance coefficient of single indicators, the correlation coefficient matrix of each indicator can be obtained as shown in Table 3. It can be seen that the tolerance coefficient of plant height, leaf number, fresh biomass, dry biomass, net photosynthetic rate and stomatal conductance were extremely significantly correlated, the tolerance coefficient of maximum root length, leaf number, net photosynthetic rate and transpiration rate were significant correlated, and while the tolerance coefficient of intercellular  $CO_2$  concentration was not related to that of the other indicators.

The Eigen values  $(\lambda_i)$ , variance contributions  $(P_j)$ , and cumulative variance contributions  $(\Sigma P_j)$  of each principal component were obtained by the PCA as shown in Table 4.

| Species          | Height | Leaf number | Maximum root length | Fresh biomass | Dry biomass | Pn     | Ε      | gs     | Ci     |
|------------------|--------|-------------|---------------------|---------------|-------------|--------|--------|--------|--------|
| Mung bean        | 0.8659 | 0.8125      | 1.0122              | 0.8940        | 0.8841      | 0.7904 | 0.8575 | 0.9108 | 1.1206 |
| Soyabean         | 0.8613 | 0.6932      | 0.9044              | 0.8892        | 0.8884      | 0.4609 | 1.0858 | 0.8576 | 1.1077 |
| Buckwheat        | 0.8399 | 0.6667      | 0.8971              | 0.8842        | 0.8479      | 0.5257 | 0.7799 | 0.4391 | 1.1087 |
| Potatoes         | 0.8414 | 0.7185      | 0.9760              | 0.9255        | 0.8770      | 0.4553 | 1.0944 | 0.6116 | 1.1425 |
| Maize            | 0.9926 | 0.9000      | 1.0125              | 0.9835        | 0.9755      | 1.1481 | 1.2275 | 1.0737 | 1.1537 |
| Sorghum          | 1.0063 | 0.9000      | 0.9996              | 0.9776        | 1.0005      | 1.0970 | 1.1741 | 1.1444 | 1.2337 |
| Foxtail millet   | 0.9966 | 1.0000      | 1.0020              | 0.9946        | 0.9943      | 1.2274 | 1.2078 | 1.2287 | 1.1048 |
| Broomcorn millet | 0.9948 | 1.0000      | 1.0042              | 1.0188        | 1.0254      | 1.1045 | 1.2610 | 1.2778 | 1.0840 |

**Table 2:** The tolerance coefficient of each indicator to  $CO_2$  for eight crops  $(x_i)$ 

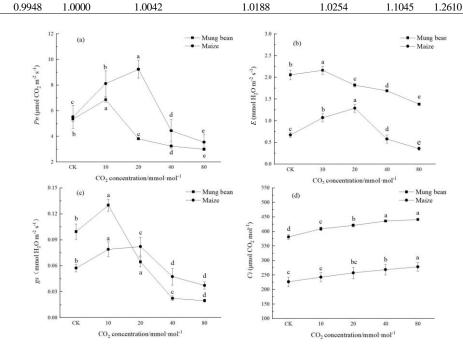



Fig. 3: Impacts of different  $CO_2$  concentration on Pn (a), E (b), gs (c) and Ci (d) of mung bean and maize

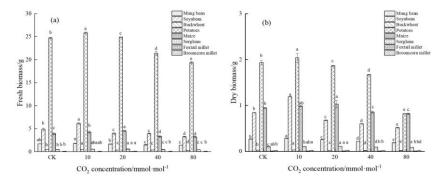



Fig. 4: Impacts of different CO<sub>2</sub> concentration on fresh (a) and dry (b) biomass of eight crops

It can be seen that the cumulative variance contribution of the first three principal components has reached 92.24%, which can reflect the information of the tolerance coefficients of the nine single indicators. The Eigen vector of the single indicator to the first three principal components is shown in Table 5.

Comprehensive evaluation of crop tolerance to CO<sub>2</sub>:  $Z_1$ ,  $Z_2$  and  $Z_3$  of each crop were calculated according to Table 5

and formula (2). The membership degree  $({}^{\mu_{(Z_{k})}})$  of each principal component to the comprehensive tolerance coefficient of each crop were calculated by formula (4), the weight values of each principal component were calculated by formula (5) and the comprehensive tolerance coefficient (D) of each crop were finally calculated according to formula (3) as shown in Table 6.

| Indicators          | Height      | Leaf number | Maximum root length | Fresh biomass | Dry biomass | Pn           | Ε      | Gs    |
|---------------------|-------------|-------------|---------------------|---------------|-------------|--------------|--------|-------|
| Leaf number         | 0.919**     |             |                     |               |             |              |        |       |
| Maximum root length | 0.661       | 0.719*      |                     |               |             |              |        |       |
| Fresh biomass       | 0.927**     | 0.924**     | 0.694               |               |             |              |        |       |
| Dry biomass         | 0.974**     | 0.940**     | 0.670               | 0.960**       |             |              |        |       |
| Pn                  | 0.954**     | 0.953**     | 0.719*              | 0.873**       | 0.909**     |              |        |       |
| Ε                   | $0.789^{*}$ | 0.719*      | 0.527               | 0.862**       | 0.847**     | 0.642        |        |       |
| gs                  | 0.898**     | 0.931**     | 0.711*              | 0.837**       | 0.933**     | $0.880^{**}$ | 0.780* |       |
| Ci                  | 0.304       | 0046        | 0.275               | 0.137         | 0.210       | 0.209        | 0.176  | 0.104 |

Table 3: The correlation matrix of each indicator

Note: \*\*indicate extremely significant correlation ( $P \le 0.01$ ); \* indicate significant correlation ( $P \le 0.05$ )

**Table 4:**  $\lambda_i$ ,  $P_i$  and  $\sum P_i$  of each principal component

| Principal components | $\lambda_i$ | <i>P</i> <sub>/</sub> % | $\sum P_i / \%$ |
|----------------------|-------------|-------------------------|-----------------|
| 1                    | 6.899       | 76.65                   | 76.65           |
| 2                    | 1.022       | 11.36                   | 88.01           |
| 3                    | 0.561       | 6.23                    | 94.24           |
| 4                    | 0.313       | 3.48                    | 97.72           |
| 5                    | 0.157       | 1.75                    | 99.47           |
| 6                    | 0.041       | 0.46                    | 99.93           |
| 7                    | 0.008       | 0.08                    | 100.00          |
| 8                    | 0.000       | 0.00                    | 100.00          |
| 9                    | 0.000       | 0.00                    | 100.00          |

Table 5: The Eigen vector of the single indicator to the principal component

| Indicator           | $b_{iI}$ | $b_{i2}$ | $b_{i3}$ |
|---------------------|----------|----------|----------|
| Height              | 0.971    | 0.075    | 0.093    |
| Leaf number         | 0.968    | -0.170   | -0.157   |
| Maximum root length | 0.784    | 0.153    | -0.501   |
| Fresh biomass       | 0.957    | -0.086   | 0.128    |
| Dry biomass         | 0.982    | -0.028   | 0.137    |
| Pn                  | 0.947    | 0.005    | -0.189   |
| Ε                   | 0.833    | -0.035   | 0.447    |
| gs                  | 0.941    | -0.119   | -0.014   |
| Ci                  | 0.226    | 0.970    | 0.075    |

| Table 6: Z values, | μ | values and D | values of | eight crops |
|--------------------|---|--------------|-----------|-------------|
|--------------------|---|--------------|-----------|-------------|

| Species          | Zı     | $Z_2$  | $Z_3$   | $\mu_{(Z1)}$ | $\mu_{(Z2)}$ | $\mu_{(Z3)}$ | D value | Order |
|------------------|--------|--------|---------|--------------|--------------|--------------|---------|-------|
| Mung bean        | 6.7176 | 0.9326 | -0.0134 | 0.4101       | 0.7000       | 0.0000       | 0.4162  | 5     |
| Soyabean         | 6.3381 | 0.9205 | 0.2230  | 0.2637       | 0.6349       | 1.0000       | 0.3598  | 6     |
| Buckwheat        | 5.6543 | 0.9857 | 0.0796  | 0.0000       | 0.9864       | 0.3935       | 0.1459  | 8     |
| Potatoes         | 6.2011 | 0.9855 | 0.1954  | 0.2109       | 0.9856       | 0.8831       | 0.3509  | 7     |
| Maize            | 7.9089 | 0.9185 | 0.1065  | 0.8696       | 0.6243       | 0.5070       | 0.8148  | 4     |
| Sorghum          | 7.9226 | 0.9882 | 0.1077  | 0.8749       | 1.0000       | 0.5121       | 0.8645  | 1     |
| Foxtail millet   | 8.2239 | 0.8340 | 0.0708  | 0.9911       | 0.1686       | 0.3561       | 0.8479  | 3     |
| Broomcorn millet | 8.2470 | 0.8027 | 0.1216  | 1.0000       | 0.0000       | 0.5712       | 0.8500  | 2     |

According to the above definition of crop tolerance to  $CO_2$ , greater the D value, stronger would be the crop tolerance to  $CO_2$ . It can be seen from Table 6 that the comprehensive tolerance coefficient (D value) to  $CO_2$  of the eight crops ranged from 0.1459 to 0.8645, wherein the D values of the  $C_3$  crop were from 0.1459 to 0.4162, and the D values of the  $C_4$  crop were from 0.8148 to 0.8645. The comprehensive tolerance coefficient to  $CO_2$  of the eight typical crops in the Loess Plateau of China was: sorghum > broomcorn millet > foxtail millet > maize > mung beans > soybean > potatoes > buckwheat successively. That is to say, the tolerance of  $C_4$  crops to  $CO_2$ was obviously stronger than that of  $C_3$  crops. This finding is highly consistent with the results of the actual potted plant in simulation experiment on the apparent characteristics and biomass changes of crops.

#### Discussion

This study mainly simulated the impacts of ultra-high CO<sub>2</sub> concentration from CO<sub>2</sub> leakage of CCS project on typical crops. It was found that the growth of crops in experiment were all promoted as the CO<sub>2</sub> concentration was less than 10 mmol·mol<sup>-1</sup> for C<sub>3</sub> crops and 20 mmol·mol<sup>-1</sup> for C<sub>4</sub> crops. At those points of CO<sub>2</sub> concentration, the plant height, maximum root length, biomass, *Pn*, *E* and *gs* of the eight crops were reached to the highest among the different treatments of CO<sub>2</sub> concentration (Fig. 2–4).

As we know, photosynthesis of  $C_3$  and  $C_4$  plants immobilizes CO<sub>2</sub> using the Ribulose-1, 5-bisphosphate carboxylase (Rubisco) in Calvin cycle (Pan, 2015). The elevation of CO<sub>2</sub> concentration within a certain range can increase the activity of Rubisco and the binding of Rubisco with CO<sub>2</sub>, so as to improve the carboxylation rate of Rubisco and the photosynthesis rate of plants, and thereby promoting the growth of plants (Mauney et al., 1978; Sharkey, 1985; Wong, 1990). When the CO<sub>2</sub> concentration was higher than 20 mmol·mol<sup>-1</sup>, the growth of  $C_3$  and  $C_4$ crops was inhibited in varying degrees, and the tolerance of  $C_4$  crops to  $CO_2$  was more stronger than that of  $C_3$  crops, which is consistent with the results of West et al. (2009), Wu et al. (2014) and Ji et al. (2018). In general, the reason of the inhibition in most crops is that high concentration of  $CO_2$  may cause a decrease in soil  $O_2$ , or lead to the decrease of soil pH and the acidification of soil solution, which may reduce the source of plant energy and inhibit the absorption of water and mineral nutrition by root system (Beaubien et al., 2008; Li et al., 2009; Patil et al., 2010; Zhang et al., 2016).

The impacts of  $CO_2$  on crop growth and development are very complex and the tolerance of crops to CO<sub>2</sub> is diverse (Krüger et al., 2009; West et al., 2009; Ziogou et al., 2013; West et al., 2015). The selection, interaction and treatment of indicators should be considered in establishment of evaluation method for the crops tolerance to CO<sub>2</sub> (Donnelly et al., 2016; Nan et al., 2016). Based on the study of the impacts of CO<sub>2</sub> on crops, nine indicators were selected to evaluate the crop tolerance to  $CO_2$  in the study. According to the measured values of indicators under normal CO<sub>2</sub> concentration, the tolerance coefficient of each single indicator was calculated (Table 2). Nine single indicators were converted into three principal components by PCA (Table 4). On the basis of the Eigen vector of the single indicator to the principal component (Table 5), the comprehensive tolerance coefficient of eight crops was obtained by FCE. In this study, the correlation between single indicators was eliminated by PCA (Table 3). Through FCE, the comprehensive effect of the evaluation indicators of crop tolerance was refined (Table 6). By setting the weight value of evaluation indicators of crop tolerance with the variance contributions of each principal component, the subjectivity of weight value determination of evaluation indicators of crop tolerance can be avoided, and the quantitative evaluation of crop tolerance to CO<sub>2</sub> can be realized (Table 6).

In the determination of the tolerance coefficient of single indicators, the tolerance of indicators only with simple inhibition is easy to measure, while the tolerance of the indicators both with promotion and inhibition is more complicated. The measured values of the indicators under normal  $CO_2$  concentration were used as the control in this study. The ratio of the average value at all concentrations to the measured values under normal  $CO_2$  concentration was used as the tolerance coefficient of the single indicator, and

the "fertilization" and "inhibition" effects of  $CO_2$  were simply synthesized. Whether it is necessary to distinguish and how to more accurately describe the difference between the effects of "fertilization" and "inhibition" is a question that needed further consideration.

#### Conclusion

Growth of  $C_3$  crops was promoted when  $CO_2$  concentration was less than 10 mmol·mol<sup>-1</sup>, and growth of  $C_4$  crops was improved when  $CO_2$  level was less than 20 mmol·mol<sup>-1</sup>. When CO<sub>2</sub> concentration continues to increase, the growth of C<sub>3</sub> and C<sub>4</sub> crops was inhibited by varying degrees, in which the inhibition for C3 crops were more obvious. Based on PCA and FCE, a comprehensive evaluation method of crop tolerance to  $CO_2$  was established, which not only dealt with the information overlap caused by the correlation among the single indicators, but also dealt with the assignment of the weight values of each indicator in comprehensive evaluation. The C<sub>4</sub> crops showed stronger tolerance to CO<sub>2</sub> than C<sub>3</sub> crops. Thus, when CCS project is implemented in the Loess Plateau of China, C<sub>4</sub> crops, especially sorghum, can be used as priority crops for agricultural production, while C3 crops, especially buckwheat, may be the indicator crops for  $CO_2$  leakage.

#### Acknowledgements

Research for this article was supported by 863 Program Grant of Ministry of Science and Technology of China (2012AA050103), and Natural Science Research Program of Education Department in Shaanxi Province of China (2019).

#### References

- Amonette, J.E., J.L. Barr, L.M. Dobeck, K. Gullickson and S.J. Walsh, 2010. Spatiotemporal changes in CO<sub>2</sub> emissions during the second ZERT injection, August–September 2008. *Environ. Earth Sci.*, 60: 263–272
- Beaubien, S.E., G. Ciotoli, P. Coombs, M.C. Dictor, M. Krüger, S. Lombardi, J.M. Pearce and J.M. West, 2008. The impact of a naturally occurring CO<sub>2</sub> gas vent on the shallow ecosystem and soil chemistry of a Mediterranean pasture (*Latera, Ital*). *Intl. J. Greenhouse Gas Cont.*, 2: 373–387
- Blackford, J., C. Hattam, S. Widdicombe, N. Burnside, M. Naylor, K. Kirk, P. Maul and I. Wright, 2013. CO<sub>2</sub> leakage from geological storage facilities: environmental, societal and economic impacts, monitoring and research strategies. *Geol. Storage CO*<sub>2</sub>, 10: 149–178
- Cerling, T.E., J.R. Ehleringer and J.M. Harris, 1998. Carbon dioxide starvation, the development of C<sub>4</sub> ecosystems, and mammalian evolution and discussion. *Phil. Trans. Royal Soc. Lond. Ser. B. Biol. Sci.*, 353: 159–171
- Cerling, T.E., Y. Wang and J. Quade, 1993. Expansion of  $C_4$  ecosystems as an indicator of global ecological change in the late Miocene. *Nature*, 361: 344–345
- Christensen, J.M., 2007. Carbon Dioxide Capture and Storage. *Environ. Policy Collect.*, 33: 303–305
- Cure, J.D. and B. Acock, 1986. Crop response to carbon dioxide doubling: a literature survey. Agric. For. Meteorol., 38: 127–145
- Deng, H.Z., H.H. Zhang, C.R. Li, F. Han and H. Zhang, 2017. Effect of artificial simulation for sealed CO<sub>2</sub> leakage on soil enzyme activities. *Appl. Chem. Ind.*, 46: 4–9

- Donnelly, L., A.M. Jagodziński, O.M. Grant and C.O. Reillya, 2016. Above-and below-ground biomass partitioning and fine root morphology in juvenile Sitka spruce clones in monoclonal and polyclonal mixtures. *For. Ecol. Manage.*, 373: 17–25
- GCCSI, 2018. *The Global Status of CCS*. Global CCS Institute Report. Melbourne, Australia
- Hatch, M.D., 1987.C<sub>4</sub> photosynthesis: A unique elend of modified biochemistry, anatomy and ultrastructure. BBA- Rev. Bioener., 895: 81–106
- Hatch, M.D. and C.R. Slack, 1966. Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. *Biochem. J.*, 101: 103–111
- IPCC, 2005. IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, UK
- Ji, X., X. Ma, Y.J. Han, M.Y. Yu and C.C. Meng, 2018. Effect of different leakage speeds on plants in carbon capture and storage by simulation in chamber. *Chin. Soc. Agric. Eng.*, 34: 242–247
- Kimball, B.A., J.R. Mauney and F.S. Nakayama, 1993. Effects of increasing atmospheric CO<sub>2</sub> on vegetation. *Vegetatio*, 104/105: 64–75
- Koch, P.L., N.S. Diffenbaugh and K.A. Hoppe, 2004. The effects of late Quaternary climate and pCO<sub>2</sub> change on C<sub>4</sub> plant abundance in the south-central United States. *Palaeogeograp. Palaeoclimatol. Palaeoecol.*, 207: 331–357
- Krüger, M., D. Jones, J. Frerichs, I. Birte, Oppermann, J. West, P. Coombs, K. Green, T. Barlow, R. Lister, R. Shaw, M. Strutt and I. Möllera, 2009. Effects of elevated CO<sub>2</sub> concentrations on the vegetation and microbial populations at a terrestrial CO<sub>2</sub> vent at Laacher See, Germany. *Intl. J. Greenhouse Gas Cont.*, 5: 1093–1098
- Lakkaraju, V.R., X. Zhou, M.E. Apple, A.I. Cunningham, L.M. Dobeck, K. Gullickson and L.H. Spanglerd, 2010. Studying the vegetation response to simulated leakage of sequestered CO<sub>2</sub> using spectral vegetation indices. *Ecol. Inform.*, 5: 379–389
- Leung, D.Y.C., G. Caramanna and M.M. Maroto-Valer, 2014. An overview of current status of carbon dioxide capture and storage technologies. *Renewable Sustain. Ener. Rev.*, 39: 426–443
- Li, T.L., H.B. Chen, Z.P. Sun and W.H. Wang, 2009. Effects of rhizosphere aeration on matrix gas, matrix nutrition and xylem sap in cucumber. *Chin. Soc. Agric. Eng.*, 25: 301–305
- Luo, Y., J.B. Xi, X.H. Tan and J.M. Zhang, 2013. Evaluation of shade tolerance of nine warm-season turfgrass and selection of their shade tolerant indices. *Caoye Xuebao*, 22: 239–247
- Mauney, J.R., K.E. Fry and G. Guinn, 1978. Relationship of photosynthetic rate to growth and fruiting of cotton, soybean, sorghum, and sunflower. *Crop Sci.*, 18: 259–263
- Metz, B. and O. Davidson, 2008. Working group III of the Intergovernmental Panel on Climate Change, Carbon Dioxide Capture and Storage. MRS Bull., 33: 303–305
- Nan, Z.B., S.M. Wang, Y.R. Wang, H. Fu, C.J. Li and Y.Y. Duan, 2016. Stress tolerance mechanisms of 6 native plant species growing in China's northern grassland and their utilization. *Chin. Sci. Bull.*, 61: 239–249
- Pan, R.Z., 2015. Plant Physiology. 5<sup>th</sup> edition. Higher Education Press, Beijing, China
- Patil, R.H., J.J. Colls and M.D. Steven, 2010. Effects of CO<sub>2</sub> gas as leaks from geological storage sites on agro-ecosystems. *Energy*, 35: 4587–4591
- Pfanz, H., D. Vodnik, C. Wittmann, G. Aschan, F. Batic, B. Turk and I. Macek, 2007. Photosynthetic performance (CO<sub>2</sub>-compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (*Phleum pratense* L.) is affected by elevated carbon dioxide in postvolcanic mofette areas. *Environ. Exp. Bot.*, 61: 41–48
- Pierce, S. and S. Sjögersten, 2009. Effects of below ground CO<sub>2</sub> emissions on plant and microbial communities. *Plant Soil*, 325: 197–205
- Rogers, H.H., G.B. Runion, S.A. Prior and H.A. Torbert, 1999. 8–Response of plants to elevated atmospheric CO<sub>2</sub>: root growth, mineral nutrition, and soil carbon. CO<sub>2</sub> Environ. Stress, 75: 215–244
- Rosie, C.M.D., 1973. Some enzyme activities associated with the Chlorophyll containing layers of the immature barley pericarp. *Planta*, 114: 219–226

- Sayre, R.T., R.A. Kennedy and D.J. Pringnitz, 1979. Photosynthetic enzyme activities and localization in Mollugo verticillata populations differing in the levels of C<sub>3</sub> and C<sub>4</sub> cycle operation. *Plant Physiol.*, 64: 293–299
- Sharkey, T.D., 1985. Photosynthesis in intact leaves of C<sub>3</sub> plants: physics, physiology and rate limitations. *Bot. Rev.*, 51: 53–105
- Shelford, V.E., 1911a. Ecological succession I. stream fishes and the method of physiographic analysis. *Biol. Bull.*, 21: 9–35
- Shelford, V.E., 1911b. Ecological succession II. pond fishes. *Biol. Bull.*, 21: 127–151
- Shelford, V.E., 1931. Some concepts of bioecology. Ecology, 12: 455-467
- Stenhouse, M., R. Arthur and W. Zhou, 2009a. Assessing environmental impacts from geological CO<sub>2</sub> storage. *Ener. Proc.*, 1: 1895–1902
- Stenhouse, M., J. Gale and W. Zhou, 2009b. Current status of risk assessment and regulatory frameworks for geological CO<sub>2</sub> storage. *Ener. Proc.*, 1: 2455–2462
- Tian, D., 2013. Research on the Effect of Captured CO<sub>2</sub> Leakage on Crops, Grass and Soil Environment. Anhui Normal University, Anhui, China
- Wang, C.Y., Y.R. Pan, M.Y. Bai and M. Wen, 1995. The experiment study of effects doubled CO<sub>2</sub> concentration on several main crops in China. *Qixiang Xuebao*, 55: 86–94
- Weiner, H., J.N. Burnell, I.E. Woodrow, H.W. Heldt and M.D. Hatch, 1988. Metabolite diffusion into bundle sheath cells from C<sub>4</sub> plants: relation to C<sub>4</sub> photosynthesis and plasmodesmatal function. *Plant Physiol.*, 88: 815–822
- West, J.M., D.G. Jones, A. Annunziatelies, T.S. Barlow, S.E. Beaubien, A. Bond, N. Breward, P. Coombs, D. Angelis, A. Gardner, V. Gemeni, S. Graziani, K.A. Green, S. Gregory, S. Gwosdze, S. Hannis, K. Kirk, N. Koukouzas and F. Ziogou, 2015. Comparison of the impacts of elevated CO<sub>2</sub> soil gas concentrations on selected European terrestrial environments. *Intl. J. Greenhouse Gas Cont.*, 42: 357–371
- West, J.M., J. Pearce, P. Coombs, J.R. Ford, C. Scheib, J.J. Colls, K.L. Smith and M.D. Steven, 2009. The impact of controlled injection of CO<sub>2</sub> on the soil ecosystem and chemistry of an English lowland pasture. *Ener. Proc.*, 1: 1863–1870
- Wong, S., 1990. Elevated atmospheric partial pressure of CO<sub>2</sub> and plant growth. *Oecologia*, 23: 171–180
- Wu, Y., X. Ma, Y.E. Li and Y.F. Wan, 2014. The impacts of introduced CO<sub>2</sub> flux on maize/alfalfa and soil. *Intl. J. Greenhouse Gas Cont.*, 23: 86–97
- Xie, J.J. and C.P. Liu, 2013. Methods of Fuzzy Mathematics and Applications, 4<sup>th</sup> edition. Huazhong University of Science and Technology. Press, Wuhan, China
- Xue, L., J.J. Ma, S. Wang, Q. Li, J.F. Ma, H.G. Yu, S.J. Jiang and C.X. Huang, 2014. Effects of CO<sub>2</sub> leakage from CCS on the physiological characteristics of C<sub>4</sub> crops. *Ener. Proc.*, 63: 3209–3214
- Yang, S.T., Y.F. Li, Y.X. Hu and J.X. Lin, 1997. Effects of CO<sub>2</sub> concentration doubling on the leaf morphology and structure of 10 species in Gramineae. *Zhiwu Xuebao*, 39: 859–866
- Yu, J.L., 1993. Agricultural Multivariate Experiment Statistics. Beijing Agricultural University Press, Beijing, China
- Zhang, X.Y., M. Xin, Z. Zhao, Y. Wu and Y. Li, 2016. CO<sub>2</sub> leakageinduced vegetation decline is primarily driven by decreased soil O<sub>2</sub>[J]. J. Environ. Manage., 171: 225–230
- Zhou, X., M.E. Apple, L.M. Dobeck, A.B. Cunningham and L.H. Spangler, 2013. Observed response of soil O<sub>2</sub> concentration to leaked CO<sub>2</sub> from an engineered CO<sub>2</sub> leakage experiment. *Intl. J. Greenhouse Gas Cont.*, 16: 116–128
- Ziogou, F., V. Gemeni, N. Koukouzas, D. Angelis, S. Libertini, S.E. Beaubien, S. Lombardi, J.M. West, D.G. Jones, P. Coombs, T.S. Barlow, S. Gwosdz and M. Krüger, 2013. Potential Environmental Impacts of CO<sub>2</sub> Leakage from the Study of Natural Analogue Sites in Europe. *Ener. Proc.*, 37: 3521–3528
- Zwaan, B.V.D. and R. Gerlagh, 2009. Economics of geological CO<sub>2</sub> storage and leakage. *Climatic Change*, 93: 285–309

[Received 09 Mar 2019; Accepted 06 Apr 2019; Published (online) 12 Jul 2019]